From Conformal Group to Symmetries of Hypergeometric Type Equations
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
From Conformal Group to Symmetries of Hypergeometric Type Equations
|
|
Creator |
Dereziński, J.
Majewski, P. |
|
Description |
We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ₀F₁ equation follow from the Helmholtz equation in 2 dimensions.
|
|
Date |
2019-02-18T15:06:11Z
2019-02-18T15:06:11Z 2016 |
|
Type |
Article
|
|
Identifier |
From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 35J05; 33Cxx; 35B06 DOI:10.3842/SIGMA.2016.108 http://dspace.nbuv.gov.ua/handle/123456789/148546 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|