Запис Детальніше

From Conformal Group to Symmetries of Hypergeometric Type Equations

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title From Conformal Group to Symmetries of Hypergeometric Type Equations
 
Creator Dereziński, J.
Majewski, P.
 
Description We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ₀F₁ equation follow from the Helmholtz equation in 2 dimensions.
 
Date 2019-02-18T15:06:11Z
2019-02-18T15:06:11Z
2016
 
Type Article
 
Identifier From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35J05; 33Cxx; 35B06
DOI:10.3842/SIGMA.2016.108
http://dspace.nbuv.gov.ua/handle/123456789/148546
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України