Twistor Geometry of Null Foliations in Complex Euclidean Space
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Twistor Geometry of Null Foliations in Complex Euclidean Space
|
|
Creator |
Taghavi-Chabert, A.
|
|
Description |
We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface Qⁿ of dimension n≥3, and its twistor space PT, defined to be the space of all linear subspaces of maximal dimension of Qⁿ. Viewing complex Euclidean space CEⁿ as a dense open subset of Qⁿ, we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on CEⁿ can be constructed in terms of complex submanifolds of PT. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing-Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.
|
|
Date |
2019-02-18T15:47:04Z
2019-02-18T15:47:04Z 2017 |
|
Type |
Article
|
|
Identifier |
Twistor Geometry of Null Foliations in Complex Euclidean Space / A. Taghavi-Chabert // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 32L25; 53C28; 53C12 DOI:10.3842/SIGMA.2017.005 http://dspace.nbuv.gov.ua/handle/123456789/148560 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|