Запис Детальніше

Connected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometry

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Connected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometry
 
Creator Burke, M.
 
Description We extend some fundamental definitions and constructions in the established generalisation of Lie theory involving Lie groupoids by reformulating them in terms of groupoids internal to a well-adapted model of synthetic differential geometry. In particular we define internal counterparts of the definitions of source path and source simply connected groupoid and the integration of A-paths. The main results of this paper show that if a classical Hausdorff Lie groupoid satisfies one of the classical connectedness conditions it also satisfies its internal counterpart.
 
Date 2019-02-18T15:39:03Z
2019-02-18T15:39:03Z
2017
 
Type Article
 
Identifier Connected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometry / M. Burke // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 27 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 22E60; 22E65; 03F55; 18B25; 18B40
DOI:10.3842/SIGMA.2017.007
http://dspace.nbuv.gov.ua/handle/123456789/148557
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України