Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves
|
|
Creator |
Kanazawa, A.
|
|
Description |
We prove the Doran-Harder-Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi-Yau manifold X degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi-Yau manifold of X can be constructed by gluing the two mirror Landau-Ginzburg models of the quasi-Fano manifolds. The two crucial ideas in our proof are to obtain a complex structure by gluing the underlying affine manifolds and to construct the theta functions from the Landau-Ginzburg superpotentials.
|
|
Date |
2019-02-18T16:29:46Z
2019-02-18T16:29:46Z 2017 |
|
Type |
Article
|
|
Identifier |
Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves / A. Kanazawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 53D37; 14J33; 14J32; 14J45; 14D06 DOI:10.3842/SIGMA.2017.024 http://dspace.nbuv.gov.ua/handle/123456789/148604 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|