Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
|
|
Creator |
Chiba, H.
|
|
Description |
A multi-Poisson structure on a Lie algebra g provides a systematic way to construct completely integrable Hamiltonian systems on g expressed in Lax form ∂Xλ/∂t=[Xλ,Aλ] in the sense of the isospectral deformation, where Xλ,Aλ∈g depend rationally on the indeterminate λ called the spectral parameter. In this paper, a method for modifying the isospectral deformation equation to the Lax equation ∂Xλ/∂t=[Xλ,Aλ]+∂Aλ/∂λ in the sense of the isomonodromic deformation, which exhibits the Painlevé property, is proposed. This method gives a few new Painlevé systems of dimension four.
|
|
Date |
2019-02-18T15:51:51Z
2019-02-18T15:51:51Z 2017 |
|
Type |
Article
|
|
Identifier |
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 18 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 34M35; 34M45; 34M55 DOI:10.3842/SIGMA.2017.025 http://dspace.nbuv.gov.ua/handle/123456789/148562 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|