On a Lie Algebraic Characterization of Vector Bundles
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On a Lie Algebraic Characterization of Vector Bundles
|
|
Creator |
B.A. Lecomte, P.
Leuther, T. Mushengezi, E.Z. |
|
Description |
We prove that a vector bundle π: E→M is characterized by the Lie algebra generated by all differential operators on E which are eigenvectors of the Lie derivative in the direction of the Euler vector field. Our result is of Pursell-Shanks type but it is remarkable in the sense that it is the whole fibration that is characterized here. The proof relies on a theorem of [Lecomte P., J. Math. Pures Appl. (9) 60 (1981), 229-239] and inherits the same hypotheses. In particular, our characterization holds only for vector bundles of rank greater than 1.
|
|
Date |
2019-02-18T11:00:40Z
2019-02-18T11:00:40Z 2012 |
|
Type |
Article
|
|
Identifier |
On a Lie Algebraic Characterization of Vector Bundles / P. B.A. Lecomte, T. Leuther, E.Z. Mushengezi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 13N10; 16S32; 17B65; 17B63 DOI: http://dx.doi.org/10.3842/SIGMA.2012.004 http://dspace.nbuv.gov.ua/handle/123456789/148364 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|