Запис Детальніше

Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators
 
Creator Salazar, M.A.
Sepe, D.
 
Description Motivated by the importance of symplectic isotropic realisations in the study of Poisson manifolds, this paper investigates the local and global theory of contact isotropic realisations of Jacobi manifolds, which are those of minimal dimension. These arise naturally when considering multiplicity-free actions in contact geometry, as shown in this paper. The main results concern a classification of these realisations up to a suitable notion of isomorphism, as well as establishing a relation between the existence of symplectic and contact isotropic realisations for Poisson manifolds. The main tool is the classical Spencer operator which is related to Jacobi structures via their associated Lie algebroid, which allows to generalise previous results as well as providing more conceptual proofs for existing ones.
 
Date 2019-02-18T16:46:28Z
2019-02-18T16:46:28Z
2017
 
Type Article
 
Identifier Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators / M.A. Salazar, D. Sepe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 33 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53D10; 53D17; 53D20; 37J15
DOI:10.3842/SIGMA.2017.033
http://dspace.nbuv.gov.ua/handle/123456789/148630
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України