A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
|
|
Creator |
An, H.
Rogers, C. |
|
Description |
A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system.
|
|
Date |
2019-02-18T12:44:36Z
2019-02-18T12:44:36Z 2012 |
|
Type |
Article
|
|
Identifier |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction / H. An, C. Rogers // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 34A34; 35A25 DOI: http://dx.doi.org/10.3842/SIGMA.2012.057 http://dspace.nbuv.gov.ua/handle/123456789/148449 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|