Запис Детальніше

Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group
 
Creator Li, H.
Sun, J.
Xu, Y.
 
Description The discrete Fourier analysis on the 30°-60°-90° triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G₂, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of m-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type.
 
Date 2019-02-18T12:42:41Z
2019-02-18T12:42:41Z
2012
 
Type Article
 
Identifier Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group / H. Li, J. Sun, Y. Xu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 41A05; 41A10
DOI: http://dx.doi.org/10.3842/SIGMA.2012.067
http://dspace.nbuv.gov.ua/handle/123456789/148448
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України