Запис Детальніше

Ladder Operators for Lamé Spheroconal Harmonic Polynomials

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Ladder Operators for Lamé Spheroconal Harmonic Polynomials
 
Creator Méndez-Fragoso, R.
Ley-Koo, E.
 
Description Three sets of ladder operators in spheroconal coordinates and their respective actions on Lamé spheroconal harmonic polynomials are presented in this article. The polynomials are common eigenfunctions of the square of the angular momentum operator and of the asymmetry distribution Hamiltonian for the rotations of asymmetric molecules, in the body-fixed frame with principal axes. The first set of operators for Lamé polynomials of a given species and a fixed value of the square of the angular momentum raise and lower and lower and raise in complementary ways the quantum numbers n₁ and n₂ counting the respective nodal elliptical cones. The second set of operators consisting of the cartesian components Ĺx, Ĺy, Ĺz of the angular momentum connect pairs of the four species of polynomials of a chosen kind and angular momentum. The third set of operators, the cartesian components px, py, pz of the linear momentum, connect pairs of the polynomials differing in one unit in their angular momentum and in their parities. Relationships among spheroconal harmonics at the levels of the three sets of operators are illustrated.
 
Date 2019-02-18T18:03:21Z
2019-02-18T18:03:21Z
2012
 
Type Article
 
Identifier Ladder Operators for Lamé Spheroconal Harmonic Polynomials / R. Méndez-Fragoso, E. Ley-Koo // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 35 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20C35; 22E70; 33C47; 33C80; 81R05
DOI: http://dx.doi.org/10.3842/SIGMA.2012.074
http://dspace.nbuv.gov.ua/handle/123456789/148705
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України