Запис Детальніше

Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles
 
Creator Levin, A.M.
Olshanetsky, M.A.
Smirnov, A.V.
Zotov, A.V.
 
Description We describe new families of the Knizhnik-Zamolodchikov-Bernard (KZB) equations related to the WZW-theory corresponding to the adjoint G-bundles of different topological types over complex curves Σg,n of genus g with n marked points. The bundles are defined by their characteristic classes - elements of H²(Σg,n,Z(G)), where Z(G) is a center of the simple complex Lie group G. The KZB equations are the horizontality condition for the projectively flat connection (the KZB connection) defined on the bundle of conformal blocks over the moduli space of curves. The space of conformal blocks has been known to be decomposed into a few sectors corresponding to the characteristic classes of the underlying bundles. The KZB connection preserves these sectors. In this paper we construct the connection explicitly for elliptic curves with marked points and prove its flatness.
 
Date 2019-02-18T17:37:32Z
2019-02-18T17:37:32Z
2012
 
Type Article
 
Identifier Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles / A.M. Levin, M.A. Olshanetsky, A.V. Smirnov, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 74 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14H70; 32G34; 14H60
DOI: http://dx.doi.org/10.3842/SIGMA.2012.095
http://dspace.nbuv.gov.ua/handle/123456789/148657
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України