Integrability, Quantization and Moduli Spaces of Curves
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Integrability, Quantization and Moduli Spaces of Curves
|
|
Creator |
Rossi, P.
|
|
Description |
This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guéré.
|
|
Date |
2019-02-18T18:14:12Z
2019-02-18T18:14:12Z 2017 |
|
Type |
Article
|
|
Identifier |
Integrability, Quantization and Moduli Spaces of Curves / P. Rossi // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.
DOI:10.3842/SIGMA.2017.060 1815-0659 2010 Mathematics Subject Classification: 14H10; 14H70; 37K10 http://dspace.nbuv.gov.ua/handle/123456789/148729 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|