Запис Детальніше

Integrability, Quantization and Moduli Spaces of Curves

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Integrability, Quantization and Moduli Spaces of Curves
 
Creator Rossi, P.
 
Description This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guéré.
 
Date 2019-02-18T18:14:12Z
2019-02-18T18:14:12Z
2017
 
Type Article
 
Identifier Integrability, Quantization and Moduli Spaces of Curves / P. Rossi // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.
DOI:10.3842/SIGMA.2017.060
1815-0659
2010 Mathematics Subject Classification: 14H10; 14H70; 37K10
http://dspace.nbuv.gov.ua/handle/123456789/148729
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України