Запис Детальніше

A Universal Genus-Two Curve from Siegel Modular Forms

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title A Universal Genus-Two Curve from Siegel Modular Forms
 
Creator Malmendier, A.
Shaska, T.
 
Description Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular forms. The curve Cα,β is defined over the field of moduli K if and only if the quadratic has a K-rational point (α,β). We discover some interesting symmetries of the Weierstrass equation of Cα,β. This extends previous work of Mestre and others.
 
Date 2019-02-19T19:32:49Z
2019-02-19T19:32:49Z
2017
 
Type Article
 
Identifier A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14H10; 14H45
DOI:10.3842/SIGMA.2017.089
http://dspace.nbuv.gov.ua/handle/123456789/149268
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України