Contact Geometry of Hyperbolic Equations of Generic Type
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Contact Geometry of Hyperbolic Equations of Generic Type
|
|
Creator |
The, D.
|
|
Description |
We study the contact geometry of scalar second order hyperbolic equations in the plane of generic type. Following a derivation of parametrized contact-invariants to distinguish Monge-Ampère (class 6-6), Goursat (class 6-7) and generic (class 7-7) hyperbolic equations, we use Cartan's equivalence method to study the generic case. An intriguing feature of this class of equations is that every generic hyperbolic equation admits at most a nine-dimensional contact symmetry algebra. The nine-dimensional bound is sharp: normal forms for the contact-equivalence classes of these maximally symmetric generic hyperbolic equations are derived and explicit symmetry algebras are presented. Moreover, these maximally symmetric equations are Darboux integrable. An enumeration of several submaximally symmetric (eight and seven-dimensional) generic hyperbolic structures is also given.
|
|
Date |
2019-02-19T13:07:36Z
2019-02-19T13:07:36Z 2008 |
|
Type |
Article
|
|
Identifier |
Contact Geometry of Hyperbolic Equations of Generic Type / D. The // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 26 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 35A30; 35L70; 58J70 http://dspace.nbuv.gov.ua/handle/123456789/149023 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|