Запис Детальніше

Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
 
Creator Dimakis, A.
Müller-Hoissen, F.
 
Description We present a general solution-generating result within the bidifferential calculus approach to integrable partial differential and difference equations, based on a binary Darboux-type transformation. This is then applied to the non-autonomous chiral model, a certain reduction of which is known to appear in the case of the D-dimensional vacuum Einstein equations with D−2 commuting Killing vector fields. A large class of exact solutions is obtained, and the aforementioned reduction is implemented. This results in an alternative to the well-known Belinski-Zakharov formalism. We recover relevant examples of space-times in dimensions four (Kerr-NUT, Tomimatsu-Sato) and five (single and double Myers-Perry black holes, black saturn, bicycling black rings).
 
Date 2019-02-19T18:58:49Z
2019-02-19T18:58:49Z
2013
 
Type Article
 
Identifier Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations / A. Dimakis, F. Müller-Hoissen // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 80 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37K10; 16E45
DOI: http://dx.doi.org/10.3842/SIGMA.2013.009
http://dspace.nbuv.gov.ua/handle/123456789/149219
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України