Запис Детальніше

Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems
 
Creator Schuch, D.
 
Description The time-evolution of the maximum and the width of exact analytic wave packet (WP) solutions of the time-dependent Schrödinger equation (SE) represents the particle and wave aspects, respectively, of the quantum system. The dynamics of the maximum, located at the mean value of position, is governed by the Newtonian equation of the corresponding classical problem. The width, which is directly proportional to the position uncertainty, obeys a complex nonlinear Riccati equation which can be transformed into a real nonlinear Ermakov equation. The coupled pair of these equations yields a dynamical invariant which plays a key role in our investigation. It can be expressed in terms of a complex variable that linearizes the Riccati equation. This variable also provides the time-dependent parameters that characterize the Green's function, or Feynman kernel, of the corresponding problem. From there, also the relation between the classical and quantum dynamics of the systems can be obtained. Furthermore, the close connection between the Ermakov invariant and the Wigner function will be shown. Factorization of the dynamical invariant allows for comparison with creation/annihilation operators and supersymmetry where the partner potentials fulfil (real) Riccati equations. This provides the link to a nonlinear formulation of time-independent quantum mechanics in terms of an Ermakov equation for the amplitude of the stationary state wave functions combined with a conservation law. Comparison with SUSY and the time-dependent problems concludes our analysis.
 
Date 2019-02-19T13:12:45Z
2019-02-19T13:12:45Z
2008
 
Type Article
 
Identifier Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems / D. Schuch // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 22 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37J15; 81Q05; 81Q60; 81S30
http://dspace.nbuv.gov.ua/handle/123456789/149040
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України