Запис Детальніше

Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type
 
Creator Vassiliou, P.J.
 
Description The Cauchy problem for harmonic maps from Minkowski space with its standard flat metric to a certain non-constant curvature Lorentzian 2-metric is studied. The target manifold is distinguished by the fact that the Euler-Lagrange equation for the energy functional is Darboux integrable. The time evolution of the Cauchy data is reduced to an ordinary differential equation of Lie type associated to SL(2) acting on a manifold of dimension 4. This is further reduced to the simplest Lie system: the Riccati equation. Lie reduction permits explicit representation formulas for various initial value problems. Additionally, a concise (hyperbolic) Weierstrass-type representation formula is derived. Finally, a number of open problems are framed.
 
Date 2019-02-19T19:02:16Z
2019-02-19T19:02:16Z
2013
 
Type Article
 
Identifier Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type / P.J. Vassiliou // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 23 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53A35; 53A55; 58A15; 58A20; 58A30
DOI: http://dx.doi.org/10.3842/SIGMA.2013.024
http://dspace.nbuv.gov.ua/handle/123456789/149228
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України