Geometry of Optimal Control for Control-Affine Systems
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Geometry of Optimal Control for Control-Affine Systems
|
|
Creator |
Clelland, J.N.
Moseley, C.G. Wilkens, G.R. |
|
Description |
Motivated by the ubiquity of control-affine systems in optimal control theory, we investigate the geometry of point-affine control systems with metric structures in dimensions two and three. We compute local isometric invariants for point-affine distributions of constant type with metric structures for systems with 2 states and 1 control and systems with 3 states and 1 control, and use Pontryagin's maximum principle to find geodesic trajectories for homogeneous examples. Even in these low dimensions, the behavior of these systems is surprisingly rich and varied.
|
|
Date |
2019-02-19T18:35:52Z
2019-02-19T18:35:52Z 2013 |
|
Type |
Article
|
|
Identifier |
Geometry of Optimal Control for Control-Affine Systems / J.N. Clelland, C.G. Moseley, G.R. Wilkens // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 6 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 58A30; 53C17; 58A15; 53C10 DOI: http://dx.doi.org/10.3842/SIGMA.2013.034 http://dspace.nbuv.gov.ua/handle/123456789/149206 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|