Запис Детальніше

Geometry of Optimal Control for Control-Affine Systems

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Geometry of Optimal Control for Control-Affine Systems
 
Creator Clelland, J.N.
Moseley, C.G.
Wilkens, G.R.
 
Description Motivated by the ubiquity of control-affine systems in optimal control theory, we investigate the geometry of point-affine control systems with metric structures in dimensions two and three. We compute local isometric invariants for point-affine distributions of constant type with metric structures for systems with 2 states and 1 control and systems with 3 states and 1 control, and use Pontryagin's maximum principle to find geodesic trajectories for homogeneous examples. Even in these low dimensions, the behavior of these systems is surprisingly rich and varied.
 
Date 2019-02-19T18:35:52Z
2019-02-19T18:35:52Z
2013
 
Type Article
 
Identifier Geometry of Optimal Control for Control-Affine Systems / J.N. Clelland, C.G. Moseley, G.R. Wilkens // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 6 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 58A30; 53C17; 58A15; 53C10
DOI: http://dx.doi.org/10.3842/SIGMA.2013.034
http://dspace.nbuv.gov.ua/handle/123456789/149206
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України