Запис Детальніше

Geometry of Control-Affine Systems

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Geometry of Control-Affine Systems
 
Creator Clelland, J.N.
Moseley, C.G.
Wilkens, G.R.
 
Description Motivated by control-affine systems in optimal control theory, we introduce the notion of a point-affine distribution on a manifold X – i.e., an affine distribution F together with a distinguished vector field contained in F. We compute local invariants for point-affine distributions of constant type when dim(X) = n, rank(F) = n–1, and when dim(X) = 3, rank(F) = 1. Unlike linear distributions, which are characterized by integer-valued invariants – namely, the rank and growth vector – when dim(X) ≤ 4, we find local invariants depending on arbitrary functions even for rank 1 point-affine distributions on manifolds of dimension 2.
 
Date 2019-02-19T17:20:18Z
2019-02-19T17:20:18Z
2009
 
Type Article
 
Identifier Geometry of Control-Affine Systems / J.N. Clelland, C.G. Moseley, G.R. Wilkens // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 26 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 58A30; 53C17; 58A15; 53C10
http://dspace.nbuv.gov.ua/handle/123456789/149099
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України