Geometry of Control-Affine Systems
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Geometry of Control-Affine Systems
|
|
Creator |
Clelland, J.N.
Moseley, C.G. Wilkens, G.R. |
|
Description |
Motivated by control-affine systems in optimal control theory, we introduce the notion of a point-affine distribution on a manifold X – i.e., an affine distribution F together with a distinguished vector field contained in F. We compute local invariants for point-affine distributions of constant type when dim(X) = n, rank(F) = n–1, and when dim(X) = 3, rank(F) = 1. Unlike linear distributions, which are characterized by integer-valued invariants – namely, the rank and growth vector – when dim(X) ≤ 4, we find local invariants depending on arbitrary functions even for rank 1 point-affine distributions on manifolds of dimension 2.
|
|
Date |
2019-02-19T17:20:18Z
2019-02-19T17:20:18Z 2009 |
|
Type |
Article
|
|
Identifier |
Geometry of Control-Affine Systems / J.N. Clelland, C.G. Moseley, G.R. Wilkens // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 26 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 58A30; 53C17; 58A15; 53C10 http://dspace.nbuv.gov.ua/handle/123456789/149099 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|