Запис Детальніше

Compact Riemannian Manifolds with Homogeneous Geodesics

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Compact Riemannian Manifolds with Homogeneous Geodesics
 
Creator Alekseevsky, D.V.
Nikonorov, Y.G.
 
Description A homogeneous Riemannian space (M = G/H,g) is called a geodesic orbit space (shortly, GO-space) if any geodesic is an orbit of one-parameter subgroup of the isometry group G. We study the structure of compact GO-spaces and give some sufficient conditions for existence and non-existence of an invariant metric g with homogeneous geodesics on a homogeneous space of a compact Lie group G. We give a classification of compact simply connected GO-spaces (M = G/H,g) of positive Euler characteristic. If the group G is simple and the metric g does not come from a bi-invariant metric of G, then M is one of the flag manifolds M₁ = SO(2n+1)/U(n) or M₂ = Sp(n)/U(1)·Sp(n–1) and g is any invariant metric on M which depends on two real parameters. In both cases, there exists unique (up to a scaling) symmetric metric g₀ such that (M,g0) is the symmetric space M = SO(2n+2)/U(n+1) or, respectively, CP²n⁻¹. The manifolds M₁, M₂ are weakly symmetric spaces.
 
Date 2019-02-19T17:31:47Z
2019-02-19T17:31:47Z
2009
 
Type Article
 
Identifier Compact Riemannian Manifolds with Homogeneous Geodesics / D.V. Alekseevsky, Y.G. Nikonorov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 53C20; 53C25; 53C35
http://dspace.nbuv.gov.ua/handle/123456789/149121
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України