Запис Детальніше

Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
 
Creator Znojil, M.
 
Description One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians H ≠ H† is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [Znojil M., SIGMA 5 (2009), 001, 19 pages, arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain non-equivalent short-range metric operators Θ ≠ I represented, in Runge-Kutta approximation, by (2R–1)-diagonal matrices.
 
Date 2019-02-19T17:27:09Z
2019-02-19T17:27:09Z
2009
 
Type Article
 
Identifier Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators / M. Znojil // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 81U20; 46C15; 81Q10; 34L25; 47A40; 47B50
http://dspace.nbuv.gov.ua/handle/123456789/149110
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України