Elliptic Hypergeometric Laurent Biorthogonal Polynomials with a Dense Point Spectrum on the Unit Circle
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Elliptic Hypergeometric Laurent Biorthogonal Polynomials with a Dense Point Spectrum on the Unit Circle
|
|
Creator |
Tsujimoto, S.
Zhedanov, A. |
|
Description |
Using the technique of the elliptic Frobenius determinant, we construct new elliptic solutions of the QD-algorithm. These solutions can be interpreted as elliptic solutions of the discrete-time Toda chain as well. As a by-product, we obtain new explicit orthogonal and biorthogonal polynomials in terms of the elliptic hypergeometric function ₃E₂(z). Their recurrence coefficients are expressed in terms of the elliptic functions. In the degenerate case we obtain the Krall-Jacobi polynomials and their biorthogonal analogs.
|
|
Date |
2019-02-19T18:00:32Z
2019-02-19T18:00:32Z 2009 |
|
Type |
Article
|
|
Identifier |
Elliptic Hypergeometric Laurent Biorthogonal Polynomials with a Dense Point Spectrum on the Unit Circle / S. Tsujimoto, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 33E05; 33E30; 33C47 http://dspace.nbuv.gov.ua/handle/123456789/149171 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|