Запис Детальніше

Elliptic Hypergeometric Laurent Biorthogonal Polynomials with a Dense Point Spectrum on the Unit Circle

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Elliptic Hypergeometric Laurent Biorthogonal Polynomials with a Dense Point Spectrum on the Unit Circle
 
Creator Tsujimoto, S.
Zhedanov, A.
 
Description Using the technique of the elliptic Frobenius determinant, we construct new elliptic solutions of the QD-algorithm. These solutions can be interpreted as elliptic solutions of the discrete-time Toda chain as well. As a by-product, we obtain new explicit orthogonal and biorthogonal polynomials in terms of the elliptic hypergeometric function ₃E₂(z). Their recurrence coefficients are expressed in terms of the elliptic functions. In the degenerate case we obtain the Krall-Jacobi polynomials and their biorthogonal analogs.
 
Date 2019-02-19T18:00:32Z
2019-02-19T18:00:32Z
2009
 
Type Article
 
Identifier Elliptic Hypergeometric Laurent Biorthogonal Polynomials with a Dense Point Spectrum on the Unit Circle / S. Tsujimoto, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 33E05; 33E30; 33C47
http://dspace.nbuv.gov.ua/handle/123456789/149171
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України