Запис Детальніше

A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions
 
Creator Kuniba, A.
Okado, M.
Yamada, Y.
 
Description For a finite-dimensional simple Lie algebra g, let U⁺q(g) be the positive part of the quantized universal enveloping algebra, and Aq(g) be the quantized algebra of functions. We show that the transition matrix of the PBW bases of U⁺q(g) coincides with the intertwiner between the irreducible Aq(g)-modules labeled by two different reduced expressions of the longest element of the Weyl group of g. This generalizes the earlier result by Sergeev on A₂ related to the tetrahedron equation and endows a new representation theoretical interpretation with the recent solution to the 3D reflection equation for C₂. Our proof is based on a realization of U⁺q(g) in a quotient ring of Aq(g).
 
Date 2019-02-21T07:04:16Z
2019-02-21T07:04:16Z
2013
 
Type Article
 
Identifier A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Function / A. Kuniba, M. Okado, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B37; 20G42; 81R50; 17B80
DOI: http://dx.doi.org/10.3842/SIGMA.2013.049
http://dspace.nbuv.gov.ua/handle/123456789/149342
 
Language en
 
Relation Symmetry, Integrability and Geometry: Methods and Applications
 
Publisher Інститут математики НАН України