Integrability of Discrete Equations Modulo a Prime
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Integrability of Discrete Equations Modulo a Prime
|
|
Creator |
Kanki, M.
|
|
Description |
We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion of the singularity confinement does. We first prove that q-discrete analogues of the Painlevé III and IV equations have AGR. We next prove that the Hietarinta-Viallet equation, a non-integrable chaotic system also has AGR.
|
|
Date |
2019-02-21T07:08:28Z
2019-02-21T07:08:28Z 2013 |
|
Type |
Article
|
|
Identifier |
Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 37K10; 34M55; 37P25 DOI: http://dx.doi.org/10.3842/SIGMA.2013.056 http://dspace.nbuv.gov.ua/handle/123456789/149351 |
|
Language |
en
|
|
Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
Publisher |
Інститут математики НАН України
|
|