Проект інформаційної системи розпізнавання математичних виразів
Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Проект інформаційної системи розпізнавання математичних виразів
Project of information system for the recognition of mathematical expressions |
|
Creator |
Верес, О. М.
Рішняк, І. В. Цюп’як, Т. О. Veres, Oleh Ryshniak, Igor Tsyup’yak, Tomash |
|
Contributor |
Національний університет “Львівська політехніка”
Lviv Polytechnic National University |
|
Subject |
аналіз
класифікація класифікатор символ структура математичний вираз машинне навчання classification classifier symbol structure mathematical expression machine learning 004.67 |
|
Description |
У статті описано дослідження особливості методів та алгоритмів розпізнавання математичних виразів. Досліджено можливість одночасного виконування структурного аналізу та класифікації символів. Описано процес класифікації символів та побудови відповідної системи, що ґрунтується на методах машинного навчання. Розроблений ітеративний алгоритм реалізовано в проекті інтелектуальної інформаційної системи розпізнавання математичних виразів. The article describes the research of the peculiarities of methods and algorithms for the recognition of mathematical expressions. The possibility of simultaneous execution of structural analysis and classification of characters is investigated. The process of classification of the symbols and construction of the corresponding system, based on methods of machine learning, is described. The developed iterative algorithm is implemented in the design of the intelligent information system for the recognition of mathematical expressions. |
|
Date |
2019-02-27T11:07:06Z
2019-02-27T11:07:06Z 2018-02 26 2018-02 26 |
|
Type |
Article
|
|
Identifier |
Верес О. М. Проект інформаційної системи розпізнавання математичних виразів / О. М. Верес, І. В. Рішняк, Т. О. Цюп’як // Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2018. — № 901. — С. 103–110. — (Комп’ютерна та математична лінгвістика).
http://ena.lp.edu.ua:8080/handle/ntb/44535 Veres O. Project of information system for the recognition of mathematical expressions / Oleh Veres, Igor Ryshniak, Tomash Tsyup’yak // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Informatsiini systemy ta merezhi. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2018. — No 901. — P. 103–110. — (Information systems, networks and technology). |
|
Language |
uk
|
|
Relation |
Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі, 901, 2018
https://uk.wikipedia.org/wiki/ http://www.abbyy.ua/ua/ https://www.simpleocr.com/ http://www.paperfile.net/ https://ru.wikipedia.org/wiki/Microsoft_Office_Document_Imaging 1. Оптичне_розпізнавання_символів [Електронний ресурс]. – Режим доступу до ресурсу: https://uk.wikipedia.org/wiki/ 2. ABBYY FineReader 14 [Електронний ресурс]. – Режим доступу до ресурсу: http://www.abbyy.ua/ua/. 3. SimpleOCR [Електронний ресурс] – Режим доступу до ресурсу: https://www.simpleocr.com/. 4. Free OCR Software [Електронний ресурс]. – Режим доступу до ресурсу: http://www.paperfile.net/. 5. Microsoft Office Document Imaging [Електронний ресурс]. – Режим доступу до ресурсу: https://ru.wikipedia.org/wiki/Microsoft_Office_Document_Imaging. 6. Antonacopoulos A. Competition on Historical Book Recognition / A. Antonacopoulos, C. Clausner, C. Papadopoulos, S. Pletschacher // 12th International Conference on Document Analysis and Recognition. – 2013. – No. 12. – С. 1459–1463. 7. Потапов А. С. Распознавание образов и машинное восприятие / А. С. Потапов. – Санкт-Петербург: Издательство "Политехника", 2007. – 548 с. 8. Zanibbi R. Recognizing mathematical expressions using tree transformation / R. Zanibbi, D. Blostein, J. Cordy // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2002. – No. 24. – С. 1455–1467. 9. Tapia E. Recognition of on-line handwritten mathematical formulas in the e-chalk system / E. Tapia, R. Rojas // Seventh International Conference on Document Analysis and Recognition. – 2003. – No. 7. – С. 980–984. 10. Zhang L. Using fuzzy logic to analyze superscript and subscript relations in handwritten mathematical expressions / L. Zhang, D. Blostein, Zanibbi R. // Eighth International Conference on Document Analysis and Recognition. – 2005. – No. 8. – С. 972–976. 11. Suzuki T. Using fuzzy logic to analyze superscript and subscript relations in handwritten mathematical expressions / T. Suzuki, S. Aoshima, K. Mori, Y. Suenaga // Eighth International Conference on Pattern Recognition. – 2000. – No. 25. – С. 515–518. 12. Toyozumi K. A system for real-time recognition of handwritten mathematical formulas / K. Toyozumi, T. Suzuki, K. Mori, Y. Suenaga // Sixth International Conference on Document Analysis and Recognition. – 2001. – No. 6. – С. 1059–1063. 13. Lee H. Understanding mathematical expressions using procedure-oriented transformation / H. Lee, M. Lee // Pattern Recognition. – 1994. – No. 3. – С. 447–457. 14. Chang S. A method for the structural analysis of two-dimensional mathematical expressions / S. Chang // Information Sciences. – 1970. – No. 3. – С. 253–272. 15. Chaudhuri B. An approach for recognition and interpretation of mathematical expressions in printed document / B. Chaudhuri, U. Garain // Pattern Analysis and Applications. – 2000. – No. 2. – С. 120–131. 16. Tapia E. Recognition of on-line handwritten mathematical expressions using a minimum spanning tree construction and symbol dominance / E. Tapia, R. Rojas // Graphics Recognition Algorithms and Applications. – 2004. – (Lecture Notes in Computer Science). – С. 329–340. 17. Xiangwei Q. The study of structure analysis strategy in handwritten recognition of general mathematical expression / Q. Xiangwei, P. Weimin, Y. Sup, W. Yang // International Forum on Information Technology and Applications. – 2009. – No. 2. – С. 101–107. 18. Ha M. Structural analysis of printed mathematical expressions based on combined strategy / M. Ha, X. Tian, N. Li // International Conference on Machine Learning and Cybernetics. – 2006. – С. 2254–3358. 19. Y. Eto and M. Suzuki. Mathematical formula recognition using virtual link network / Y. Eto, M. Suzuki // 6th International Conference on Document Analysis and Recognition. – 2001. – С. 762–767. 20. Rhee T. Efficient search strategy in structural analysis for handwritten mathematical expression recognition / T. Rhee, J. Kim // Pattern Recognition. – 2009. – No. 12. – С. 3192–3201. 21. Miller E. Ambiguity and constraint in mathematical expression recognition / E. Miller, P. Viola // Fifteenth National Conference on Artificial Intelligence. Tenth Conference on Innovative Applications of Artificial Intelligence. – 1998. – С. 784–791. 22. Chen Y. Fundamental study on structural understanding of mathematical expressions / Y. Chen, T. Shimizu, M. Okada // Systems, Man, and Cybernetics. – 1999. – С. 910–914. 23. Tian X. Structural analysis of printed mathematical expression / X. Tian, S. Wang, X. Liu // International Conference on Computational Intelligence and Security. – 2007. – С. 1030–1034. 24. Garcia P. Using a generic document recognition method for mathematical formulae recognition / P. Garcia, B. Coüasnon // Graphics Recognition Algorithms and Applications.– 2001. – (Lecture Notes in Computer Science). – С. 236–244. 25. Lavirotte S. Optical formula recognition / S. Lavirotte // 4th International Conference on Document Analysis and Recognition. – 1997. – С. 357–361. 26. Awal A. Towards handwritten mathematical expression recognition / A. Awal, H. Mouchere, C. Viard-Gaudin // 10th International Conference on Document Analysis and Recognition. – 2009. – С. 1046–1050. 27. Wang Z. Automatic perception of the structure of handwritten mathematical expressions / Z. Wang, C. Faure // In Computer Processing of Handwritting. – 1990. – С. 337–361. 28. Winkler H. A soft-decision approach for structural analysis of handwritten mathematical expressions / H. Winkler, H. Fahrner, M. Lang // International Conference on Acoustics, Speech, and Signal Processing. – 1995. – С. 2459–2462. 29. Genoe R. An online fuzzy approach to the structural analysis of handwritten mathematical expressions / R. Genoe, J. Fitzgerald, T. Kechadi // IEEE International Conference on Fuzzy Systems – 2006. – С. 244–250. 30. Aly W. Identifying subscripts and superscripts in mathematical documents. / W. Aly, S. Uchida, M. Suzuki // Mathematics in Computer Science. – 2008. – С. 195–209. 31. Верес О. М. Вибір методів для пошуку однакових або схожих зображень / Верес О. М., Кісь Я. П., Кугівчак В. А., Рішняк І. В. // Інформаційні системи та мережі: [зб. наук. пр.] / відп. ред. В.В. Пасічник. – Львів: Вид-во Львів. політехніки, 2018. – С. 43–50. – (Вісник Нац. ун-ту “Львів. політехніка”; № 887). 32. Veres O., Rusyn B., Sachenko A., Rishnyak I. Choosing the method of finding similar images in the reverse search system // CEUR Workshop Proceedings. – 2018. – Vol. 2136: proceedings of the 2nd International conference on computational linguistics and intelligent systems. Lviv, Ukraine, June 25–27, 2018. Vol. 1. – P. 99–107. 33. Гамма Э. Приемы объектно-ориентированного проектирования. Паттерны проектирования. СПб.: Изд-во “Питер”, 2007. – 366 с. 1. Optychne_rozpiznavannia_symvoliv [Electronic resource], Access mode: https://uk.wikipedia.org/wiki/ 2. ABBYY FineReader 14 [Electronic resource], Access mode: http://www.abbyy.ua/ua/. 3. SimpleOCR [Electronic resource] – Access mode: https://www.simpleocr.com/. 4. Free OCR Software [Electronic resource], Access mode: http://www.paperfile.net/. 5. Microsoft Office Document Imaging [Electronic resource], Access mode: https://ru.wikipedia.org/wiki/Microsoft_Office_Document_Imaging. 6. Antonacopoulos A. Competition on Historical Book Recognition, A. Antonacopoulos, C. Clausner, C. Papadopoulos, S. Pletschacher, 12th International Conference on Document Analysis and Recognition, 2013, No. 12, P. 1459–1463. 7. Potapov A. S. Raspoznavanie obrazov i mashinnoe vospriiatie, A. S. Potapov, Sankt-Peterburh: Izdatelstvo "Politekhnika", 2007, 548 p. 8. Zanibbi R. Recognizing mathematical expressions using tree transformation, R. Zanibbi, D. Blostein, J. Cordy, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, No. 24, P. 1455–1467. 9. Tapia E. Recognition of on-line handwritten mathematical formulas in the e-chalk system, E. Tapia, R. Rojas, Seventh International Conference on Document Analysis and Recognition, 2003, No. 7, P. 980–984. 10. Zhang L. Using fuzzy logic to analyze superscript and subscript relations in handwritten mathematical expressions, L. Zhang, D. Blostein, Zanibbi R., Eighth International Conference on Document Analysis and Recognition, 2005, No. 8, P. 972–976. 11. Suzuki T. Using fuzzy logic to analyze superscript and subscript relations in handwritten mathematical expressions, T. Suzuki, S. Aoshima, K. Mori, Y. Suenaga, Eighth International Conference on Pattern Recognition, 2000, No. 25, P. 515–518. 12. Toyozumi K. A system for real-time recognition of handwritten mathematical formulas, K. Toyozumi, T. Suzuki, K. Mori, Y. Suenaga, Sixth International Conference on Document Analysis and Recognition, 2001, No. 6, P. 1059–1063. 13. Lee H. Understanding mathematical expressions using procedure-oriented transformation, H. Lee, M. Lee, Pattern Recognition, 1994, No. 3, P. 447–457. 14. Chang S. A method for the structural analysis of two-dimensional mathematical expressions, S. Chang, Information Sciences, 1970, No. 3, P. 253–272. 15. Chaudhuri B. An approach for recognition and interpretation of mathematical expressions in printed document, B. Chaudhuri, U. Garain, Pattern Analysis and Applications, 2000, No. 2, P. 120–131. 16. Tapia E. Recognition of on-line handwritten mathematical expressions using a minimum spanning tree construction and symbol dominance, E. Tapia, R. Rojas, Graphics Recognition Algorithms and Applications, 2004, (Lecture Notes in Computer Science), P. 329–340. 17. Xiangwei Q. The study of structure analysis strategy in handwritten recognition of general mathematical expression, Q. Xiangwei, P. Weimin, Y. Sup, W. Yang, International Forum on Information Technology and Applications, 2009, No. 2, P. 101–107. 18. Ha M. Structural analysis of printed mathematical expressions based on combined strategy, M. Ha, X. Tian, N. Li, International Conference on Machine Learning and Cybernetics, 2006, P. 2254–3358. 19. Y. Eto and M. Suzuki. Mathematical formula recognition using virtual link network, Y. Eto, M. Suzuki, 6th International Conference on Document Analysis and Recognition, 2001, P. 762–767. 20. Rhee T. Efficient search strategy in structural analysis for handwritten mathematical expression recognition, T. Rhee, J. Kim, Pattern Recognition, 2009, No. 12, P. 3192–3201. 21. Miller E. Ambiguity and constraint in mathematical expression recognition, E. Miller, P. Viola, Fifteenth National Conference on Artificial Intelligence. Tenth Conference on Innovative Applications of Artificial Intelligence, 1998, P. 784–791. 22. Chen Y. Fundamental study on structural understanding of mathematical expressions, Y. Chen, T. Shimizu, M. Okada, Systems, Man, and Cybernetics, 1999, P. 910–914. 23. Tian X. Structural analysis of printed mathematical expression, X. Tian, S. Wang, X. Liu, International Conference on Computational Intelligence and Security, 2007, P. 1030–1034. 24. Garcia P. Using a generic document recognition method for mathematical formulae recognition, P. Garcia, B. Coüasnon, Graphics Recognition Algorithms and Applications, 2001, (Lecture Notes in Computer Science), P. 236–244. 25. Lavirotte S. Optical formula recognition, S. Lavirotte, 4th International Conference on Document Analysis and Recognition, 1997, P. 357–361. 26. Awal A. Towards handwritten mathematical expression recognition, A. Awal, H. Mouchere, C. Viard-Gaudin, 10th International Conference on Document Analysis and Recognition, 2009, P. 1046–1050. 27. Wang Z. Automatic perception of the structure of handwritten mathematical expressions, Z. Wang, C. Faure, In Computer Processing of Handwritting, 1990, P. 337–361. 28. Winkler H. A soft-decision approach for structural analysis of handwritten mathematical expressions, H. Winkler, H. Fahrner, M. Lang, International Conference on Acoustics, Speech, and Signal Processing, 1995, P. 2459–2462. 29. Genoe R. An online fuzzy approach to the structural analysis of handwritten mathematical expressions, R. Genoe, J. Fitzgerald, T. Kechadi, IEEE International Conference on Fuzzy Systems – 2006, P. 244–250. 30. Aly W. Identifying subscripts and superscripts in mathematical documents., W. Aly, S. Uchida, M. Suzuki, Mathematics in Computer Science, 2008, P. 195–209. 31. Veres O. M. Vybir metodiv dlia poshuku odnakovykh abo skhozhykh zobrazhen, Veres O. M., Kis Ya. P., Kuhivchak V. A., Rishniak I. V., Informatsiini systemy ta merezhi: [zb. nauk. pr.], vidp. red. V.V. Pasichnyk, Lviv: Vyd-vo Lviv. politekhniky, 2018, P. 43–50, (Visnyk Nats. un-tu "Lviv. politekhnika"; No 887). 32. Veres O., Rusyn B., Sachenko A., Rishnyak I. Choosing the method of finding similar images in the reverse search system, CEUR Workshop Proceedings, 2018, Vol. 2136: proceedings of the 2nd International conference on computational linguistics and intelligent systems. Lviv, Ukraine, June 25–27, 2018. Vol. 1, P. 99–107. 33. Hamma E. Priemy obieektno-orientirovannoho proektirovaniia. Patterny proektirovaniia. SPb., Izd-vo "Piter", 2007, 366 p. |
|
Rights |
© Національний університет „Львівська політехніка“, 2018
© Верес О. М., Рішняк І. В., Цюпяк Т. О., 2018 |
|
Format |
103-110
8 application/pdf image/png |
|
Coverage |
Львів
|
|
Publisher |
Видавництво Львівської політехніки
|
|