Запис Детальніше

Surface roughness modeling of CBN hard steel turning

Цифровой репозитарии Национального технического университета "Харьковский политехнический институт" (eNTUKhPIIR)

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Surface roughness modeling of CBN hard steel turning
 
Creator Kovač, P.
Taric, M.
Rodić, D.
Nedic, B.
Savković, B.
Ješić, D.
 
Subject RSM
neural network
hard steel
input factor
gradient descent method
 
Description Study in the paper investigate the influence of the cutting conditions parameters on surface roughness parameters during turning of hard steel with cubic boron nitrite cutting tool insert. For the modeling of surface roughness parameters was used central compositional design of experiment and artificial neural network as well. The values of surface roughness parameters Average mean arithmetic surface roughness (Ra) and Maximal surface roughness (Rmax) were predicted by this two-modeling methodology and determined models were then compared. The results showed that the proposed systems can significantly increase the accuracy of the product profile when compared to the conventional approaches. The results indicate that the design of experiments modeling technique and artificial neural network can be effectively used for the prediction of the surface roughness parameters of hard steel and determined significantly influential cutting conditions parameters.
 
Date 2019-03-20T12:12:56Z
2019-03-20T12:12:56Z
2018
 
Type Article
 
Identifier Surface roughness modeling of CBN hard steel turning / P. Kovač [et al.] // Резание и инструменты в технологических системах = Cutting & tools in technological systems : междунар. науч.-техн. сб. – Харьков : НТУ "ХПИ", 2018. – Вып. 89. – С. 78-87.
http://repository.kpi.kharkov.ua/handle/KhPI-Press/40336
 
Language en
 
Format application/pdf
 
Publisher Национальный технический университет "Харьковский политехнический институт"