Запис Детальніше

Mathematical simulation for algal growth in the water reservoirs of Moncton city (New Brunswick, Canada) by the supervised learning classifier

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Mathematical simulation for algal growth in the water reservoirs of Moncton city (New Brunswick, Canada) by the supervised learning classifier
 
Creator Sabir, Qurat-Ul An
Nadeem, Muhammad
Nguyen-Quang, Tri
 
Contributor Dalhousie University
 
Subject Artificial Neural Network (ANN)
Cyanobacteria
Harmful Algal Blooms (HAB)
Modified Redfield Ratio (MRR)
Supervised learning classifier
 
Description Mathematical model is a good approach to deal
with the coupling effects of governing parameters in algal
bloom growth. Among manymodels to deal with combining
factors and data-based supervised learning classifiers, the
Artificial Neural Network (ANN) has the most significant
impact on the development of bloom pattern. The objective
of this paper is to use the Artificial Neural Network (ANN)
model to simulate the growth of harmful algae under
environmental factors that can lead to bloom pattern in two
reservoirs of Moncton city (Canada) with the collected data
fromtwo years of observation 2016–2017.
 
Date 2019-03-25T11:16:03Z
2019-03-25T11:16:03Z
2018-02-01
2018-02-01
 
Type Article
 
Identifier Sabir Q. A. Mathematical simulation for algal growth in the water reservoirs of Moncton city (New Brunswick, Canada) by the supervised learning classifier / Qurat-Ul An Sabir, Muhammad Nadeem, Tri Nguyen-Quang // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 2. — P. 103–114.
http://ena.lp.edu.ua:8080/handle/ntb/44781
Sabir Q. A. Mathematical simulation for algal growth in the water reservoirs of Moncton city (New Brunswick, Canada) by the supervised learning classifier / Qurat-Ul An Sabir, Muhammad Nadeem, Tri Nguyen-Quang // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 2. — P. 103–114.
 
Language en
 
Relation Environmental Problems, 2 (3), 2018
[1] Huang, W., & Foo, S. (2002). Neural network modeling of salinity variation in Apalachicola River. Water Research, 36(1), 356–362.
[2] Maier, H. R., and Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental modelling & software, 15(1), 101–124.
[3] McCulloch, W. S. and Pitts, W. (1943), “A logical calculus of the ideas immanent in nervous activity”, The bulletin of mathematical biophysics, Vol. 5, No. 4,pp. 115–133.
[4] Torrecilla, J. S., Otero, L., & Sanz, P. D. (2004). A neural network approach for thermal/pressure food processing. Journal of Food Engineering, 62(1), 89–95.
[5] Madic, M. J., & Radovanović, M. R. (2011). Optimal selection of ANN training and architectural parameters using Taguchi method: A case study. FME Transactions,39(2), 79–86.
[6] Elangasinghe, M. A., Singhal, N., Dirks, K. N., & Salmond, J. A. (2014). Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmospheric pollution research, 5(4), 696–708.
[7] Pandey, D. S., Das, S., Pan, I., Leahy, J. J., & Kwapinski, W. (2016). Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor. Waste management, 58, 202–213.
[8] ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000). Artificial neural networks in hydrology. II: Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124–137.
[9] Khademi, F., Akbari, M., Jamal, S. M., & Nikoo, M. (2017). Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Frontiers of Structural and Civil Engineering, 11(1), 90–99.
[1] Huang, W., & Foo, S. (2002). Neural network modeling of salinity variation in Apalachicola River. Water Research, 36(1), 356–362.
[2] Maier, H. R., and Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental modelling & software, 15(1), 101–124.
[3] McCulloch, W. S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", The bulletin of mathematical biophysics, Vol. 5, No. 4,pp. 115–133.
[4] Torrecilla, J. S., Otero, L., & Sanz, P. D. (2004). A neural network approach for thermal/pressure food processing. Journal of Food Engineering, 62(1), 89–95.
[5] Madic, M. J., & Radovanović, M. R. (2011). Optimal selection of ANN training and architectural parameters using Taguchi method: A case study. FME Transactions,39(2), 79–86.
[6] Elangasinghe, M. A., Singhal, N., Dirks, K. N., & Salmond, J. A. (2014). Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmospheric pollution research, 5(4), 696–708.
[7] Pandey, D. S., Das, S., Pan, I., Leahy, J. J., & Kwapinski, W. (2016). Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor. Waste management, 58, 202–213.
[8] ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000). Artificial neural networks in hydrology. II: Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124–137.
[9] Khademi, F., Akbari, M., Jamal, S. M., & Nikoo, M. (2017). Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Frontiers of Structural and Civil Engineering, 11(1), 90–99.
 
Rights © Національний університет „Львівська політехніка“, 2018
© Qurat-Ul An Sabir, Tri Nguyen-Quang, 2018
 
Format 103-114
12
application/pdf
image/png
 
Coverage Lviv
 
Publisher Lviv Politechnic Publishing House