Запис Детальніше

Modeling of the effect of carbon dioxide desorption on carbon monoxide oxidation process on platinum catalyst surface

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Modeling of the effect of carbon dioxide desorption on carbon monoxide oxidation process on platinum catalyst surface
Моделювання впливу десорбції діоксиду вуглецю на процес оксидації монооксиду вуглецю на поверхні Pt-каталізатора
 
Creator Костробій, П.
Рижа, І.
Гнатів, Б.
Kostrobij, P.
Ryzha, I.
Hnativ, B.
 
Contributor Національний університет "Львівська політехніка"
Lviv Polytechnic National University
 
Subject каталiтична реакцiя окиснення
реакцiйно-дифузiйна модель
ма- тематичне моделювання реакцiйно-дифузiйних процесiв
reaction of catalytic oxidation
reaction-diffusion model
mathematical modeling of reaction-diffusion processes
538.9
 
Description Дослiджено двовимiрну математичну модель окиснення монооксиду вуглецю (СО) на
поверхнi платинового каталiзатора (Pt) згiдно з механiзмом Лангмюра–Гiншелвуда.
Враховано впливи структурних змiн каталiтичної поверхнi, температури пiдкладу та
десорбцiї продукту реакцiї (CO2). Показано, що врахування скiнченностi десорбцiї
CO2 незначно впливає як на хiд реакцiї окиснення, так i на область стiйкостi реакцiї.
A two-dimensional mathematical model for carbon monoxide (CO) oxidation on the platinum
(Pt) catalyst surface is investigated according to the Langmuir–Hinshelwood (LH)
mechanism. The effects of structural changes of the catalytic surface, the substrate temperature
and desorption of the product of reaction (CO2) are taken into account. It
is shown that taking into account the finiteness of CO2 desorption, both the course of
oxidation reaction and the stability region are only slightly affected
 
Date 2019-05-07T14:01:59Z
2019-05-07T14:01:59Z
2018-01-15
2018-01-15
 
Type Article
 
Identifier Kostrobij P. Modeling of the effect of carbon dioxide desorption on carbon monoxide oxidation process on platinum catalyst surface / P. Kostrobij, I. Ryzha, B. Hnativ // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 27–33.
http://ena.lp.edu.ua:8080/handle/ntb/44897
Kostrobij P. Modeling of the effect of carbon dioxide desorption on carbon monoxide oxidation process on platinum catalyst surface / P. Kostrobij, I. Ryzha, B. Hnativ // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 27–33.
 
Language en
 
Relation Mathematical Modeling and Computing, 1 (5), 2018
[1] Dicke J., ErichsenP., Wolff J., RotermundH.H. Reflection anisotropy microscopy: improved set-up and applications to CO oxidation on platinum. Surf. Sci. 462, 90–102 (2000).
[2] BaxterR. J., HuP. Insight into why the Langmuir–Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002).
[3] von OertzenA., RotermundH.H., NettesheimS. Diffusion of carbon monoxide and oxygen on Pt(110): experiments performed with the PEEM. Surf. Sci. 311 (3), 322–330 (1994).
[4] PatchettA. J., Meissen F., EngelW., BradshawA.M., ImbihlR. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Sci. 454 (1), 341–346 (2000).
[5] KelloggG. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168–2171 (1985).
[6] GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1×2) → (1×1) structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086–1089 (1989).
[7] ImbihlR., Ladas S., ErtlG. The CO-induced (1×2) ↔ (1×1) phase transition of Pt(110) studied by LEED and work function measurements. Surf. Sci. 206, L903–L912 (1988).
[8] KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992).
[9] B¨arM., EiswirthM., RotermundH.H., ErtlG. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992).
[10] CisternasY., Holmes P., Kevrekidis I.G., LiX. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118 (7), 3312–3328 (2003).
[11] Bzovska I. S., Mryglod I.M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. J. Phys. 61 (2), 134–142 (2016).
[12] PedersenT.M., Xue LiW., HammerB. Structure and activity of oxidized Pt(110) and α-PtO2. Phys. Chem. Chem. Phys. 8 (13), 1566–1574 (2006).
[13] Ryzha I., MatseliukhM. Carbon monoxide oxidation on the Pt-catalyst: modelling and stability. Math. Model. Comput. 4 (1), 96–106 (2017).
[14] ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York, VCH Publishers (1990).
[15] SuchorskiY. Private comunication.
[1] Dicke J., ErichsenP., Wolff J., RotermundH.H. Reflection anisotropy microscopy: improved set-up and applications to CO oxidation on platinum. Surf. Sci. 462, 90–102 (2000).
[2] BaxterR. J., HuP. Insight into why the Langmuir–Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002).
[3] von OertzenA., RotermundH.H., NettesheimS. Diffusion of carbon monoxide and oxygen on Pt(110): experiments performed with the PEEM. Surf. Sci. 311 (3), 322–330 (1994).
[4] PatchettA. J., Meissen F., EngelW., BradshawA.M., ImbihlR. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Sci. 454 (1), 341–346 (2000).
[5] KelloggG. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168–2171 (1985).
[6] GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1×2) → (1×1) structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086–1089 (1989).
[7] ImbihlR., Ladas S., ErtlG. The CO-induced (1×2) ↔ (1×1) phase transition of Pt(110) studied by LEED and work function measurements. Surf. Sci. 206, L903–L912 (1988).
[8] KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992).
[9] B¨arM., EiswirthM., RotermundH.H., ErtlG. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992).
[10] CisternasY., Holmes P., Kevrekidis I.G., LiX. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118 (7), 3312–3328 (2003).
[11] Bzovska I. S., Mryglod I.M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. J. Phys. 61 (2), 134–142 (2016).
[12] PedersenT.M., Xue LiW., HammerB. Structure and activity of oxidized Pt(110) and α-PtO2. Phys. Chem. Chem. Phys. 8 (13), 1566–1574 (2006).
[13] Ryzha I., MatseliukhM. Carbon monoxide oxidation on the Pt-catalyst: modelling and stability. Math. Model. Comput. 4 (1), 96–106 (2017).
[14] ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York, VCH Publishers (1990).
[15] SuchorskiY. Private comunication.
 
Rights © 2018 Lviv Polytechnic National University CMM IAPMM NASU
© 2018 Lviv Polytechnic National University CMM IAPMM NASU
 
Format 27-33
7
application/pdf
image/png
 
Coverage Lviv
 
Publisher Lviv Politechnic Publishing House