Запис Детальніше

Stability under stochastic perturbation of solutions of mathematical models of information spreading process with external control

Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка"

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Stability under stochastic perturbation of solutions of mathematical models of information spreading process with external control
Стійкість під час стохастичних збурень розв’язків у математичних моделях розповсюдження інформації зі зовнішніми впливами
 
Creator Наконечний, О.
Шевчук, Ю.
Nakonechnyi, O.
Shevchuk, I.
 
Contributor Київський національний університет імені Тараса Шевченка
Taras Shevchenko National University of Kyiv
 
Subject математична модель поширення інформації
стохастична стійкість
асимптотична стійкість у середньоквадратичному
“білий” шум
mathematical model of information spreading process
stochastic stability
asymptotic stability in quadratic average
“white” noise
517.9
 
Description Наведено загальну схему аналізу стохастичної стiйкості за першим наближенням в
околi точок стiйкості моделі розповсюдження довільної кількості типів iнформацiї на
прикладах узагальненої моделі з стацiонарними параметрами та моделi з нестаціонар-
ними параметрами та спецiальним представленням зовнiшнього впливу. Результати
числового експерименту демонструють практичнi можливостi цiєї схеми. Отриманi
результати дали змогу визначати для параметрiв моделi допустимi областi, значен-
ня з яких будуть гарантувати асимптотичну стiйкiсть у середньоквадратичному за
першим наближенням в околi стацiонарних точок.
In this paper mathematical model of spreading any number of information types with
external influences is considered. The model takes the form of n (number of information
channels) non-linear Ito stochastic differential equations. Conditions for asymptotic stability
in quadratic average in first-approximation of the special points are considered for
general stationary model and special case with non-stationary parameters. The results of
example are presented for the special case of the base model with stationary parameters.
 
Date 2019-05-07T14:01:54Z
2019-05-07T14:01:54Z
2018-01-15
2018-01-15
 
Type Article
 
Identifier Nakonechnyi O. Stability under stochastic perturbation of solutions of mathematical models of information spreading process with external control / O. Nakonechnyi, I. Shevchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 66–73.
http://ena.lp.edu.ua:8080/handle/ntb/44890
Nakonechnyi O. Stability under stochastic perturbation of solutions of mathematical models of information spreading process with external control / O. Nakonechnyi, I. Shevchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 66–73.
 
Language en
 
Relation Mathematical Modeling and Computing, 1 (5), 2018
[1] MikhailovA.P., MarevtsevaN.A. Models of Information Warfare. Mathematical Models and Computer Simulations. 3 (4), 251–259 (2012).
[2] MikhailovA.P., PetrovA.P., PronchevaO.G., MarevtsevaN.A. Mathematical Modeling of Information Warfare in a Society. Mediterranean Journal of Social Sciences. 6 (5), 27–35 (2015).
[3] NakonechnyiO.G., Zinko P.M. Confrontation problems with the dynamics Gompertzian systems. Journal of Computational and Applied Mathematics. 3 (120), 50–60 (2015), (in Ukrainian).
[4] NakonechnyiO.G., Shevchuk I.M. Mathematical model of information spreading process with nonstationary parameters. Bulletin of Taras Shevchenko National University of Kiev. Series Physics and Mathematics. 3, 98–105 (2016), (in Ukrainian).
[5] Shevchuk I.M. Stability of solutions of mathematical models of information spreading process with external control. Journal of Computational and Applied Mathematics. 1 (124), 99–111 (2017), (in Ukrainian).
[6] NakonechnyiO.G. Best-mean estimates in models of information confrontation. Abstracts XXIV International Conference “Problem of decision making under uncertainties”. Cesky Rudolec, Czech Republic. September 1 5. P. 114–115 (2014).
[7] NakonechnyiO.G., Zinko P.M. Estimates of unsteady parameters in model of information confrontation. Abstracts XXVIII International Conference “Problem of decision making under uncertainties”. Brno, Czech Republic. August 25–30. P. 82–83 (2016).
[8] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Averaged optimal predictive estimation of mathematical models of information spreading process under uncertainty. Bulletin of Taras Shevchenko National University of Kiev. Series Physics and Mathematics. 2, 122–127 (2017).
[9] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Predictive estimation of mathematical models of information spreading process under uncertainty. System Research and Information Technologies. 4, 54–65 (2017), (in Ukrainian).
[10] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Analysis of non-stationary mathematical models of information spreading process under uncertainty. Abstracts of International Scientific Conference “Modern Problems of Mathematical Modeling, Computational Mathematical Methods and Information Technologies”. Rivne, Ukraine. P. 108–110 (2018), (in Ukrainian).
[11] DemidovichB.P. Lectures on the mathematical theory of stability. Moscow, Nauka (1967), (in Russian).
[1] MikhailovA.P., MarevtsevaN.A. Models of Information Warfare. Mathematical Models and Computer Simulations. 3 (4), 251–259 (2012).
[2] MikhailovA.P., PetrovA.P., PronchevaO.G., MarevtsevaN.A. Mathematical Modeling of Information Warfare in a Society. Mediterranean Journal of Social Sciences. 6 (5), 27–35 (2015).
[3] NakonechnyiO.G., Zinko P.M. Confrontation problems with the dynamics Gompertzian systems. Journal of Computational and Applied Mathematics. 3 (120), 50–60 (2015), (in Ukrainian).
[4] NakonechnyiO.G., Shevchuk I.M. Mathematical model of information spreading process with nonstationary parameters. Bulletin of Taras Shevchenko National University of Kiev. Series Physics and Mathematics. 3, 98–105 (2016), (in Ukrainian).
[5] Shevchuk I.M. Stability of solutions of mathematical models of information spreading process with external control. Journal of Computational and Applied Mathematics. 1 (124), 99–111 (2017), (in Ukrainian).
[6] NakonechnyiO.G. Best-mean estimates in models of information confrontation. Abstracts XXIV International Conference "Problem of decision making under uncertainties". Cesky Rudolec, Czech Republic. September 1 5. P. 114–115 (2014).
[7] NakonechnyiO.G., Zinko P.M. Estimates of unsteady parameters in model of information confrontation. Abstracts XXVIII International Conference "Problem of decision making under uncertainties". Brno, Czech Republic. August 25–30. P. 82–83 (2016).
[8] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Averaged optimal predictive estimation of mathematical models of information spreading process under uncertainty. Bulletin of Taras Shevchenko National University of Kiev. Series Physics and Mathematics. 2, 122–127 (2017).
[9] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Predictive estimation of mathematical models of information spreading process under uncertainty. System Research and Information Technologies. 4, 54–65 (2017), (in Ukrainian).
[10] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Analysis of non-stationary mathematical models of information spreading process under uncertainty. Abstracts of International Scientific Conference "Modern Problems of Mathematical Modeling, Computational Mathematical Methods and Information Technologies". Rivne, Ukraine. P. 108–110 (2018), (in Ukrainian).
[11] DemidovichB.P. Lectures on the mathematical theory of stability. Moscow, Nauka (1967), (in Russian).
 
Rights © 2018 Lviv Polytechnic National University CMM IAPMM NASU
© 2018 Lviv Polytechnic National University CMM IAPMM NASU
 
Format 66-73
8
application/pdf
image/png
 
Coverage Lviv
 
Publisher Lviv Politechnic Publishing House