Запис Детальніше

Analysis of criteria for fuzzy classifier learning

Репозитарій Вінницького Національного Технічного Університету

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Analysis of criteria for fuzzy classifier learning
 
Creator Shtovba, S. D.
Pankevich, O. D.
Nagorna, A. V.
Штовба, С. Д.
Панкевич, О. Д.
Нагорна, А. В.
 
Description In a fuzzy classifier, the maping “inputs–output” is described by the linguistic 〈If–then〉 rules, the antecedents in which contain the fuzzy terms “low,” “average,” “high,” and so on. To increase the correctness, the fuzzy classifier is learned by using experimental data. The problems with equal and different costs of various classification errors are discussed. A new criterion is offered for problems with undistinguishable types of errors, in addition to the two known criteria. A new one implies that the distance between the desired and real fuzzy results of classification for the cases of a wrong decision is weighted by the penalty factor. The learning criteria are generalized for problems of classification with the cost matrix. The conducted computer experiments on the wine recognition and heart disease diagnostics problems show that the best quality parameters of tuning fuzzy classifiers are achieved by a new learning criterion.
 
Date 2019-05-14T13:25:36Z
2019-05-14T13:25:36Z
2015
 
Type Article
 
Identifier Shtovba S. D. Analysis of criteria for fuzzy classifier learning [Text] / S. D. Shtovba, O. D. Pankevich, A. V. Galushchak // Automatic Control and Computer Sciences. – 2015. – Vol. 48, № 3. - P. 123-132.
http://ir.lib.vntu.edu.ua//handle/123456789/24763
 
Language uk_UA
 
Relation Automatic Control and Computer Sciences. №3 : 123-132.
 
Format application/pdf
 
Publisher Institute of Electronics and Computer Sciences