Запис Детальніше

A matrix electrodynamics as an analogue of the Heisenberg’s mechanics

Електронного архіву Харківського національного університету радіоелектроніки (Open Access Repository of KHNURE)

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title A matrix electrodynamics as an analogue of the Heisenberg’s mechanics
 
Creator Gritsunov, A. V.
 
Subject electrodynamic system
partial oscillator
eigenvalue problem
 
Description A matrix approach to solving the electrodynamic problems is suggested. The specificity of one is treatment of an electrodynamic system (ES) as an oscillating system with a finite number of the degrees of freedom. The ES is considered as a set of spatially localized so-called partial oscillators (oscillets). Matrices of unit mutual pseudoenergies and unit mutual energies of the oscillators are evaluated. The eigenfrequencies and the eigenfunctions of the ES can be calculated basing on the lumped elements oscillating system matrix theory. A matrix second-order ordinary differential equation is solved for excited potentials of the ES instead of the D’Alembert equation. The main advantage of the matrix electrodynamics is substitution of the solving the partial derivative differential equations by the less computationally intensive linear algebra problems and the ordinary differential equation integration.
 
Date 2019-05-31T12:53:20Z
2019-05-31T12:53:20Z
2008
 
Type Conference proceedings
 
Identifier Gritsunov A. A matrix electrodynamics as an analogue of the Heisenberg’s mechanics // Proc. 8th Int. Symp. on Antennas, Propagation and EM Theory (ISAPE 2008) – Kunming, China. – 2008. – P. 471-474.
http://openarchive.nure.ua/handle/document/9092
 
Language en_US