Algebra in superextensions of semilattices
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Algebra in superextensions of semilattices
|
|
Creator |
Banakh, T.
Gavrylkiv, V. |
|
Description |
Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone-ˇCech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilattice iff φ(X) is a semilattice iff the semilattice X is finite and linearly ordered. We prove that the semigroup β(X) is a band if and only if X has no infinite antichains, and the semigroup λ(X) is commutative if and only if X is a bush with finite branches.
|
|
Date |
2019-06-08T09:42:17Z
2019-06-08T09:42:17Z 2012 |
|
Type |
Article
|
|
Identifier |
Algebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 26–42. — Бібліогр.: 14 назв. — англ.
1726-3255 2010 Mathematics Subject Classification: 06A12, 20M10. http://dspace.nbuv.gov.ua/handle/123456789/152184 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|