Запис Детальніше

Algebra in superextensions of semilattices

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Algebra in superextensions of semilattices
 
Creator Banakh, T.
Gavrylkiv, V.
 
Description Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone-ˇCech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilattice iff φ(X) is a semilattice iff the semilattice X is finite and linearly ordered. We prove that the semigroup β(X) is a band if and only if X has no infinite antichains, and the semigroup λ(X) is commutative if and only if X is a bush with finite branches.
 
Date 2019-06-08T09:42:17Z
2019-06-08T09:42:17Z
2012
 
Type Article
 
Identifier Algebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 26–42. — Бібліогр.: 14 назв. — англ.
1726-3255
2010 Mathematics Subject Classification: 06A12, 20M10.
http://dspace.nbuv.gov.ua/handle/123456789/152184
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України