Partitions of groups into sparse subsets
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Partitions of groups into sparse subsets
|
|
Creator |
Protasov, I.
|
|
Description |
A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset F ⊂ X, such that ∩x∈FxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G| > (κ+)א0 then η(G) > κ, if |G| ≤ κ+ then η(G) ≤ κ. We show also that cov(A) ≥ cf|G| for each sparse subset A of an infinite group G, where cov(A) = min{|X| : G = X A}.
|
|
Date |
2019-06-08T11:08:38Z
2019-06-08T11:08:38Z 2012 |
|
Type |
Article
|
|
Identifier |
Partitions of groups into sparse subsets / I. Protasov // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 107–110. — Бібліогр.: 7 назв. — англ.
1726-3255 2010 Mathematics Subject Classification: 03E75, 20F99, 20K99. http://dspace.nbuv.gov.ua/handle/123456789/152190 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|