Запис Детальніше

Partitions of groups into sparse subsets

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Partitions of groups into sparse subsets
 
Creator Protasov, I.
 
Description A subset A of a group G is called sparse if, for every infinite subset X of G, there exists a finite subset F ⊂ X, such that ∩x∈FxA is finite. We denote by η(G) the minimal cardinal such that G can be partitioned in η(G) sparse subsets. If |G| > (κ+)א0 then η(G) > κ, if |G| ≤ κ+ then η(G) ≤ κ. We show also that cov(A) ≥ cf|G| for each sparse subset A of an infinite group G, where cov(A) = min{|X| : G = X A}.
 
Date 2019-06-08T11:08:38Z
2019-06-08T11:08:38Z
2012
 
Type Article
 
Identifier Partitions of groups into sparse subsets / I. Protasov // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 107–110. — Бібліогр.: 7 назв. — англ.
1726-3255
2010 Mathematics Subject Classification: 03E75, 20F99, 20K99.
http://dspace.nbuv.gov.ua/handle/123456789/152190
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України