Prethick subsets in partitions of groups
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Prethick subsets in partitions of groups
|
|
Creator |
Protasov, I.V.
Slobodianiuk, S. |
|
Description |
A subset S of a group G is called thick if, for any finite subset F of G, there exists g ∈ G such that Fg ⊆ S, and k-prethick, k ∈ N if there exists a subset K of G such that |K| = k and KS is thick. For every finite partition P of G, at least one cell of P is k-prethick for some k ∈ N. We show that if an infinite group G is either Abelian, or countable locally finite, or countable residually finite then, for each k ∈ N, G can be partitioned in two not k-prethick subsets.
|
|
Date |
2019-06-09T06:10:55Z
2019-06-09T06:10:55Z 2012 |
|
Type |
Article
|
|
Identifier |
Prethick subsets in partitions of groups / I.V. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 267–275. — Бібліогр.: 18 назв. — англ.
1726-3255 2010 MSC:05B40, 20A05. http://dspace.nbuv.gov.ua/handle/123456789/152243 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|