Запис Детальніше

Prethick subsets in partitions of groups

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Prethick subsets in partitions of groups
 
Creator Protasov, I.V.
Slobodianiuk, S.
 
Description A subset S of a group G is called thick if, for any finite subset F of G, there exists g ∈ G such that Fg ⊆ S, and k-prethick, k ∈ N if there exists a subset K of G such that |K| = k and KS is thick. For every finite partition P of G, at least one cell of P is k-prethick for some k ∈ N. We show that if an infinite group G is either Abelian, or countable locally finite, or countable residually finite then, for each k ∈ N, G can be partitioned in two not k-prethick subsets.
 
Date 2019-06-09T06:10:55Z
2019-06-09T06:10:55Z
2012
 
Type Article
 
Identifier Prethick subsets in partitions of groups / I.V. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 267–275. — Бібліогр.: 18 назв. — англ.
1726-3255
2010 MSC:05B40, 20A05.
http://dspace.nbuv.gov.ua/handle/123456789/152243
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України