Запис Детальніше

The detour hull number of a graph

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title The detour hull number of a graph
 
Creator Santhakumaran, A.P.
Ullas Chandran, S.V.
 
Description For vertices u and v in a connected graph G = (V, E), the set ID[u, v] consists of all those vertices lying on a u−v longest path in G. Given a set S of vertices of G, the union of all sets ID[u, v] for u, v ∈ S, is denoted by ID[S]. A set S is a detour convex set if ID[S] = S. The detour convex hull [S]D of S in G is the smallest detour convex set containing S. The detour hull number dh(G) is the minimum cardinality among the subsets S of V with [S]D = V. A set S of vertices is called a detour set if ID[S] = V. The minimum cardinality of a detour set is the detour number dn(G) of G. A vertex x in G is a detour extreme vertex if it is an initial or terminal vertex of any detour containing x. Certain general properties of these concepts are studied. It is shown that for each pair of positive integers r and s, there is a connected graph G with r detour extreme vertices, each of degree s. Also, it is proved that every two integers a and b with 2 ≤ a ≤ b are realizable as the detour hull number and the detour number respectively, of some graph. For each triple D, k and n of positive integers with 2 ≤ k ≤ n − D + 1 and D ≥ 2, there is a connected graph of order n, detour diameter D and detour hull number k. Bounds for the detour hull number of a graph are obtained. It is proved that dn(G) = dh(G) for a connected graph G with detour diameter at most 4. Also, it is proved that for positive integers a, b and k ≥ 2 with a < b ≤ 2a, there exists a connected graph G with detour radius a, detour diameter b and detour hull number k. Graphs G for which dh(G) = n − 1 or dh(G) = n − 2 are characterized.
 
Date 2019-06-09T06:15:01Z
2019-06-09T06:15:01Z
2012
 
Type Article
 
Identifier The detour hull number of a graph / A.P. Santhakumaran, S.V. Ullas Chandran // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 307–322. — Бібліогр.: 14 назв. — англ.
1726-3255
2010 MSC:05C12.
http://dspace.nbuv.gov.ua/handle/123456789/152246
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України