Запис Детальніше

On the relation between completeness and H-closedness of pospaces without infinite antichains

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title On the relation between completeness and H-closedness of pospaces without infinite antichains
 
Creator Yokoyama, T.
 
Description We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be H-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} X is H-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain L ⊆ X, ⋁ L∈ cl ↓ L and ⋀L ∈ cl ↑ L. This extends a result of Gutik, Pagon, and Repovs [GPR].
 
Date 2019-06-09T15:36:33Z
2019-06-09T15:36:33Z
2013
 
Type Article
 
Identifier On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ.
1726-3255
2010 MSC:Primary 06A06, 06F30; Secondary 54F05, 54H12.
http://dspace.nbuv.gov.ua/handle/123456789/152296
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України