On the relation between completeness and H-closedness of pospaces without infinite antichains
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On the relation between completeness and H-closedness of pospaces without infinite antichains
|
|
Creator |
Yokoyama, T.
|
|
Description |
We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be H-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} X is H-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain L ⊆ X, ⋁ L∈ cl ↓ L and ⋀L ∈ cl ↑ L. This extends a result of Gutik, Pagon, and Repovs [GPR].
|
|
Date |
2019-06-09T15:36:33Z
2019-06-09T15:36:33Z 2013 |
|
Type |
Article
|
|
Identifier |
On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ.
1726-3255 2010 MSC:Primary 06A06, 06F30; Secondary 54F05, 54H12. http://dspace.nbuv.gov.ua/handle/123456789/152296 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|