Labelling matrices and index matrices of a graph structure
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Labelling matrices and index matrices of a graph structure
|
|
Creator |
Dinesh, T.
Ramakrishnan, T.V. |
|
Description |
The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123. Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J. Combin. Theory, Ser. B30 (1981), 290-301) proved that the collection of all admissible index vectors and the collection of all labellings for 0 form free F-modules (F is a commutative ring). We have obtained similar results on graph structures in a previous paper. In the present paper, we introduce labelling matrices and index matrices of graph structures and prove that the collection of all admissible index matrices and the collection of all labelling matrices for 0 form free F-modules. We also find their ranks in various cases of bipartition and char F (equal to 2 and not equal to 2).
|
|
Date |
2019-06-09T17:13:28Z
2019-06-09T17:13:28Z 2013 |
|
Type |
Article
|
|
Identifier |
Labelling matrices and index matrices of a graph structure / T. Dinesh, T. V. Ramakrishnan // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 42–60. — Бібліогр.: 12 назв. — англ.
1726-3255 2010 MSC:05C07,05C78. http://dspace.nbuv.gov.ua/handle/123456789/152307 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|