Запис Детальніше

Ideals in (Z⁺, ≤D)

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Ideals in (Z⁺, ≤D)
 
Creator Sagi, S.
 
Description A convolution is a mapping C of the set Z⁺ of positive integers into the set P(Z⁺) of all subsets of Z⁺ such that every member of C(n) is a divisor of n. If for any n, D(n) is the set of all positive divisors of n, then D is called the Dirichlet's convolution. It is well known that Z⁺ has the structure of a distributive lattice with respect to the division order. Corresponding to any general convolution C, one can define a binary relation ≤C on Z⁺ by 'm ≤ C n if and only if m ∈ C(n) '. A general convolution may not induce a lattice on Z⁺. However most of the convolutions induce a meet semi lattice structure on Z⁺. In this paper we consider a general meet semi lattice and study it's ideals and extend these to (Z⁺, ≤D), where D is the Dirichlet's convolution.
 
Date 2019-06-09T17:20:35Z
2019-06-09T17:20:35Z
2013
 
Type Article
 
Identifier Ideals in (Z⁺, ≤D) / S. Sagi // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 107–115. — Бібліогр.: 9 назв. — англ.
1726-3255
2010 MSC:06B10,11A99.
http://dspace.nbuv.gov.ua/handle/123456789/152313
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України