Запис Детальніше

Algorithmic computation of principal posets using Maple and Python

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Algorithmic computation of principal posets using Maple and Python
 
Creator Gasiorek, M.
Simson, D.
Zajac, K.
 
Description We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets I that are principal, i.e., the rational symmetric Gram matrix GI : = 1/2[CI+CItr] ∈ MI(Q) of I is positive semi-definite of corank one, where CI ∈ MI(Z) is the incidence matrix of I. With any such a connected poset I, we associate a simply laced Euclidean diagram DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈}, the Coxeter matrix CoxI := −CI ⋅ C−trI, its complex Coxeter spectrum speccI, and a reduced Coxeter number cI. One of our aims is to show that the spectrum speccI of any such a poset I determines the incidence matrix CI (hence the poset I) uniquely, up to a Z-congruence. By computer calculations, we find a complete list of principal one-peak posets I (i.e., I has a unique maximal element) of cardinality ≤ 15, together with speccI, cI, the incidence defect ∂I : ZI → Z, and the Coxeter-Euclidean type DI. In case when DI ∈ {A˜n, D˜n, E˜₆, E˜₇, E˜₈} and n := |I| is relatively small, we show that given such a principal poset I, the incidence matrix CI is Z-congruent with the non-symmetric Gram matrix GˇDI of DI, speccI = speccDI and cˇI = cˇDI. Moreover, given a pair of principal posets I and J, with |I| = |J| ≤ 15, the matrices CI and CJ are Z-congruent if and only if speccI = speccJ.
 
Date 2019-06-10T10:53:58Z
2019-06-10T10:53:58Z
2014
 
Type Article
 
Identifier Algorithmic computation of principal posets using Maple and Python / M. Gasiorek, D. Simson, K. Zajac // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 33–69. — Бібліогр.: 56 назв. — англ.
1726-3255
2010 MSC:06A11, 15A63, 68R05, 68W30.
http://dspace.nbuv.gov.ua/handle/123456789/152339
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України