On subgroups of finite exponent in groups
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On subgroups of finite exponent in groups
|
|
Creator |
Artemovych, O.D.
|
|
Description |
We investigate properties of groups with subgroups of finite exponent and prove that a non-perfect group G of infinite exponent with all proper subgroups of finite exponent has the following properties: (1) G is an indecomposable p-group, (2) if the derived subgroup G′ is non-perfect, then G/G′′ is a group of Heineken-Mohamed type. We also prove that a non-perfect indecomposable group G with the non-perfect locally nilpotent derived subgroup G′ is a locally finite p-group. |
|
Date |
2019-06-12T20:59:40Z
2019-06-12T20:59:40Z 2015 |
|
Type |
Article
|
|
Identifier |
On subgroups of finite exponent in groups / O.D. Artemovych // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 1-7. — Бібліогр.: 13 назв. — англ.
1726-3255 2010 MSC:20F50, 20F26, 20E26. http://dspace.nbuv.gov.ua/handle/123456789/152792 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|