Densities, submeasures and partitions of groups
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Densities, submeasures and partitions of groups
|
|
Creator |
Banakh, T.
Protasov, I. Slobodianiuk, S. |
|
Description |
In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition G=A₁ ∪ ⋯ ∪ An of a group G there is a cell Ai of the partition such that G = FAiA⁻¹i for some set F ⊂ G of cardinality |F |≤ n? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition G = A₁ ∪ ⋯ ∪ An of a group G there are cells Ai, Aj of the partition such that G = FAjA⁻¹j for some finite set F ⊂ G of cardinality |F| ≤ max₀
|
|
Date |
2019-06-14T03:21:10Z
2019-06-14T03:21:10Z 2014 |
|
Type |
Article
|
|
Identifier |
Densities, submeasures and partitions of groups / T. Banakh, I. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 193–221. — Бібліогр.: 25 назв. — англ.
1726-3255 2010 MSC:05E15, 05D10, 28C10. http://dspace.nbuv.gov.ua/handle/123456789/153328 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|