Запис Детальніше

Densities, submeasures and partitions of groups

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Densities, submeasures and partitions of groups
 
Creator Banakh, T.
Protasov, I.
Slobodianiuk, S.
 
Description In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition G=A₁ ∪ ⋯ ∪ An of a group G there is a cell Ai of the partition such that G = FAiA⁻¹i for some set F ⊂ G of cardinality |F |≤ n? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition G = A₁ ∪ ⋯ ∪ An of a group G there are cells Ai, Aj of the partition such that G = FAjA⁻¹j for some finite set F ⊂ G of cardinality |F| ≤ max₀
 
Date 2019-06-14T03:21:10Z
2019-06-14T03:21:10Z
2014
 
Type Article
 
Identifier Densities, submeasures and partitions of groups / T. Banakh, I. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 193–221. — Бібліогр.: 25 назв. — англ.
1726-3255
2010 MSC:05E15, 05D10, 28C10.
http://dspace.nbuv.gov.ua/handle/123456789/153328
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України