Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups
|
|
Creator |
Chattopadhyay, S.
Panigrahi, P. |
|
Description |
The power graph of a finite group is the graph whose vertices are the elements of the group and two distinct vertices are adjacent if and only if one is an integral power of the other. In this paper we discuss the planarity and vertex connectivity of the power graphs of finite cyclic, dihedral and dicyclic groups. Also we apply connectivity concept to prove that the power graphs of both dihedral and dicyclic groups are not Hamiltonian.
|
|
Date |
2019-06-14T03:25:41Z
2019-06-14T03:25:41Z 2014 |
|
Type |
Article
|
|
Identifier |
Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups / S. Chattopadhyay, P. Panigrahi // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 42–49. — Бібліогр.: 8 назв. — англ.
1726-3255 2010 MSC:05C25, 05C10, 05C40. http://dspace.nbuv.gov.ua/handle/123456789/153345 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|