Запис Детальніше

On monoids of monotone injective partial selfmaps of Ln ×lex Z with co-finite domains and images

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title On monoids of monotone injective partial selfmaps of Ln ×lex Z with co-finite domains and images
 
Creator Gutik, O.
Pozdnyakova, I.
 
Description We study the semigroup IO∞(Zⁿlex) of monotone injective partial selfmaps of the set of Ln × lex Z having co-finite domain and image, where Ln ×lex Z is the lexicographic product of n-elements chain and the set of integers with the usual order. We show that IO∞(Zⁿlex) is bisimple and establish its projective congruences. We prove that IO∞(Zⁿlex) is finitely generated, and for n = 1 every automorphism of IO∞(Zⁿlex) is inner and show that in the case n ⩾ 2 the semigroup IO∞(Zⁿlex) has non-inner automorphisms. Also we show that every Baire topology τ on IO∞(Znlex) such that (IO∞(Znlex),τ) is a Hausdorff semitopological semigroup is discrete, construct a non-discrete Hausdorff semigroup inverse topology on IO∞(Zⁿlex), and prove that the discrete semigroup IO∞(Zⁿlex) cannot be embedded into some classes of compact-like topological semigroups and that its remainder under the closure in a topological semigroup S is an ideal in S.
 
Date 2019-06-14T03:23:31Z
2019-06-14T03:23:31Z
2014
 
Type Article
 
Identifier On monoids of monotone injective partial selfmaps of Ln ×lex Z with co-finite domains and images / O. Gutik, I. Pozdnyakova // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 256–279. — Бібліогр.: 28 назв. — англ.
1726-3255
2010 MSC:20M18, 20M20; 20M05, 20M15, 22A15, 54C25, 54D40, 54E52, 54H10.
http://dspace.nbuv.gov.ua/handle/123456789/153337
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України