Запис Детальніше

On weakly semisimple derivations of the polynomial ring in two variables

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title On weakly semisimple derivations of the polynomial ring in two variables
 
Creator Gavran, V.S.
Stepukh, V.V.
 
Description Let K be an algebraically closed field of characteristic zero and K[x, y] the polynomial ring. Every element f ∈ K[x, y] determines the Jacobian derivation Df of K[x, y] by the rule Df(h) = detJ(f, h), where J(f, h) is the Jacobian matrix of the polynomials f and h. A polynomial f is called weakly semisimple if there exists a polynomial g such that Df(g) = λg for some nonzero λ ∈ K. Ten years ago, Y. Stein posed a problem of describing all weakly semisimple polynomials (such a description would characterize all two dimensional nonabelian subalgebras of the Lie algebra of all derivations of K[x, y] with zero divergence). We give such a description for polynomials f with the separated variables, i.e. which are of the form: f(x, y) = f₁(x)f₂(y) for some f₁(t), f₂(t) ∈ K[t].
 
Date 2019-06-14T03:25:55Z
2019-06-14T03:25:55Z
2014
 
Type Article
 
Identifier On weakly semisimple derivations of the polynomial ring in two variables / V.S. Gavran, V.V. Stepukh // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 50–58. — Бібліогр.: 7 назв. — англ.
1726-3255
2010 MSC:13N15; 13N99.
http://dspace.nbuv.gov.ua/handle/123456789/153346
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України