Запис Детальніше

Random walks on finite groups converging after finite number of steps

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Random walks on finite groups converging after finite number of steps
 
Creator Vyshnevetskiy, A.L.
Zhmud, E.M.
 
Description Let P be a probability on a finite group G, P(n)=P∗…∗P (n times) be an n-fold convolution of P. If n→∞, then under mild conditions P(n) converges to the uniform probability U(g)=1|G| (g∈G). We study the case when the sequence P(n) reaches its limit U after finite number of steps: P(k)=P(k+1)=⋯=U for some k. Let Ω(G) be a set of the probabilities satisfying to that condition. Obviously, U∈Ω(G). We prove that Ω(G)≠U for ``almost all'' non-Abelian groups and describe the groups for which Ω(G)=U. If P∈Ω(G), then P(b)=U, where b is the maximal degree of irreducible complex representations of the group G.
 
Date 2019-06-14T03:38:17Z
2019-06-14T03:38:17Z
2008
 
Type Article
 
Identifier Random walks on finite groups converging after finite number of steps / A.L. Vyshnevetskiy, E.M. Zhmud // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 123–129. — Бібліогр.: 3 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 20P05, 60B15.
http://dspace.nbuv.gov.ua/handle/123456789/153370
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України