Запис Детальніше

Algebra in superextensions of groups, I: zeros and commutativity

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Algebra in superextensions of groups, I: zeros and commutativity
 
Creator Banakh, T.T.
Gavrylkiv, V.
Nykyforchyn, O.
 
Description Given a group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X

endowed with the operation


A∘B={C⊂X:{x∈X:x−1C∈B}∈A}


that extends the group operation of X. We characterize right zeros of λ(X) as invariant maximal linked systems on X and prove that λ(X) has a right zero if and only if each element of X has odd order. On the other hand, the semigroup λ(X) contains a left zero if and only if it contains a zero if and only if X has odd order |X|≤5. The semigroup λ(X) is commutative if and only if |X|≤4. We finish the paper with a complete description of the algebraic structure of the semigroups λ(X) for all groups X of cardinality |X|≤5.
 
Date 2019-06-14T03:39:46Z
2019-06-14T03:39:46Z
2008
 
Type Article
 
Identifier Algebra in superextensions of groups, I: zeros and commutativity / T.T. Banakh, V. Gavrylkiv, O. Nykyforchyn // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 1–29. — Бібліогр.: 13 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 20M99, 54B20.
http://dspace.nbuv.gov.ua/handle/123456789/153373
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України