The Tits alternative for generalized triangle groups of type (3,4,2)
Vernadsky National Library of Ukraine
Переглянути архів Інформація| Поле | Співвідношення | |
| Title | The Tits alternative for generalized triangle groups of type (3,4,2) | |
| Creator | Howie, J. Williams, G. | |
| Description | A generalized triangle group is a group that can be presented in the form G=⟨x,y |xp=yq=w(x,y)r=1⟩ where p,q,r≥2 and w(x,y) is a cyclically reduced word of length at least 2 in the free product Zp∗Zq=⟨x,y |xp=yq=1⟩. Rosenberger has conjectured that every generalized triangle group G satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple (p,q,r) is one of (2,3,2), (2,4,2), (2,5,2), (3,3,2), (3,4,2), or (3,5,2). Building on a result of Benyash-Krivets and Barkovich from this journal, we show that the Tits alternative holds in the case (p,q,r)=(3,4,2). | |
| Date | 2019-06-14T03:34:25Z 2019-06-14T03:34:25Z 2008 | |
| Type | Article | |
| Identifier | The Tits alternative for generalized triangle groups of type (3,4,2) / J. Howie, G. Williams // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 40–48. — Бібліогр.: 16 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 20F05, 20E05, 57M07. http://dspace.nbuv.gov.ua/handle/123456789/153357 | |
| Language | en | |
| Relation | Algebra and Discrete Mathematics | |
| Publisher | Інститут прикладної математики і механіки НАН України | |
