Запис Детальніше

The Tits alternative for generalized triangle groups of type (3,4,2)

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title The Tits alternative for generalized triangle groups of type (3,4,2)
 
Creator Howie, J.
Williams, G.
 
Description A generalized triangle group is a group that can be presented in the form G=⟨x,y |xp=yq=w(x,y)r=1⟩ where p,q,r≥2 and w(x,y) is a cyclically reduced word of length at least 2 in the free product Zp∗Zq=⟨x,y |xp=yq=1⟩. Rosenberger has conjectured that every generalized triangle group G satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple (p,q,r) is one of (2,3,2), (2,4,2), (2,5,2), (3,3,2), (3,4,2), or (3,5,2). Building on a result of Benyash-Krivets and Barkovich from this journal, we show that the Tits alternative holds in the case (p,q,r)=(3,4,2).
 
Date 2019-06-14T03:34:25Z
2019-06-14T03:34:25Z
2008
 
Type Article
 
Identifier The Tits alternative for generalized triangle groups of type (3,4,2) / J. Howie, G. Williams // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 40–48. — Бібліогр.: 16 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 20F05, 20E05, 57M07.
http://dspace.nbuv.gov.ua/handle/123456789/153357
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України