Запис Детальніше

Projectivity and flatness over the graded ring of normalizing elements

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title Projectivity and flatness over the graded ring of normalizing elements
 
Creator Guédénon, T.
 
Description Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of A. When A is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of A replacing Z(H,A) by the set χ(H,Z(A)H) of all algebra maps from H to Z(A)H, where Z(A) is the center of A.
 
Date 2019-06-15T12:01:00Z
2019-06-15T12:01:00Z
2015
 
Type Article
 
Identifier Projectivity and flatness over the graded ring of normalizing elements / T. Guédénon // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 172-192 . — Бібліогр.: 14 назв. — англ.
1726-3255
2010 MSC:16D40, 16W50, 16W30.
http://dspace.nbuv.gov.ua/handle/123456789/154259
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України