Projectivity and flatness over the graded ring of normalizing elements
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Projectivity and flatness over the graded ring of normalizing elements
|
|
Creator |
Guédénon, T.
|
|
Description |
Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of A. When A is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of A replacing Z(H,A) by the set χ(H,Z(A)H) of all algebra maps from H to Z(A)H, where Z(A) is the center of A.
|
|
Date |
2019-06-15T12:01:00Z
2019-06-15T12:01:00Z 2015 |
|
Type |
Article
|
|
Identifier |
Projectivity and flatness over the graded ring of normalizing elements / T. Guédénon // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 172-192 . — Бібліогр.: 14 назв. — англ.
1726-3255 2010 MSC:16D40, 16W50, 16W30. http://dspace.nbuv.gov.ua/handle/123456789/154259 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|