On Galois groups of prime degree polynomials with complex roots
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
On Galois groups of prime degree polynomials with complex roots
|
|
Creator |
Oz Ben-Shimol
|
|
Description |
Let f be an irreducible polynomial of prime degree p≥5 over Q, with precisely k pairs of complex roots. Using a result of Jens Hochsmann (1999), show that if p≥4k+1 then Gal(f/Q) is isomorphic to Ap or Sp. This improves the algorithm for computing the Galois group of an irreducible polynomial of prime degree, introduced by A. Bialostocki and T. Shaska. If such a polynomial f is solvable by radicals then its Galois group is a Frobenius group of degree p. Conversely, any Frobenius group of degree p and of even order, can be realized as the Galois group of an irreducible polynomial of degree p over Q having complex roots. |
|
Date |
2019-06-15T16:50:49Z
2019-06-15T16:50:49Z 2009 |
|
Type |
Article
|
|
Identifier |
On Galois groups of prime degree polynomials with complex roots / Oz Ben-Shimol // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 2. — С. 99–107. — Бібліогр.: 19 назв. — англ.
1726-3255 2000 Mathematics Subject Classification:20B35; 12F12. http://dspace.nbuv.gov.ua/handle/123456789/154610 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|