Запис Детальніше

On Galois groups of prime degree polynomials with complex roots

Vernadsky National Library of Ukraine

Переглянути архів Інформація
 
 
Поле Співвідношення
 
Title On Galois groups of prime degree polynomials with complex roots
 
Creator Oz Ben-Shimol
 
Description Let f be an irreducible polynomial of prime degree p≥5 over Q, with precisely k pairs of complex roots. Using a result of Jens Hochsmann (1999), show that if p≥4k+1 then Gal(f/Q) is isomorphic to Ap or Sp. This improves the algorithm for computing the Galois group of an irreducible polynomial of prime degree, introduced by A. Bialostocki and T. Shaska.

If such a polynomial f is solvable by radicals then its Galois group is a Frobenius group of degree p. Conversely, any Frobenius group of degree p and of even order, can be realized as the Galois group of an irreducible polynomial of degree p over Q having complex roots.
 
Date 2019-06-15T16:50:49Z
2019-06-15T16:50:49Z
2009
 
Type Article
 
Identifier On Galois groups of prime degree polynomials with complex roots / Oz Ben-Shimol // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 2. — С. 99–107. — Бібліогр.: 19 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:20B35; 12F12.
http://dspace.nbuv.gov.ua/handle/123456789/154610
 
Language en
 
Relation Algebra and Discrete Mathematics
 
Publisher Інститут прикладної математики і механіки НАН України