Ramseyan variations on symmetric subsequences
Vernadsky National Library of Ukraine
Переглянути архів ІнформаціяПоле | Співвідношення | |
Title |
Ramseyan variations on symmetric subsequences
|
|
Creator |
Verbitsky, O.
|
|
Description |
A theorem of Dekking in the combinatorics of words implies that there exists an injective order-preserving transformation f : {0, 1, . . . , n} → {0, 1, . . . , 2n} with the restriction f(i + 1) ≤ f(i) + 2 such that for every 5-term arithmetic progression P its image f(P) is not an arithmetic progression. In this paper we consider symmetric sets in place of arithmetic progressions and prove lower and upper bounds for the maximum M = M(n) such that every f as above preserves the symmetry of at least one symmetric set S ⊆ {0, 1, . . . , n} with |S| ≥ M. |
|
Date |
2019-06-15T17:45:34Z
2019-06-15T17:45:34Z 2003 |
|
Type |
Article
|
|
Identifier |
Ramseyan variations on symmetric subsequences / O. Verbitsky // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 111–124. — Бібліогр.: 16 назв. — англ.
1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/154678 |
|
Language |
en
|
|
Relation |
Algebra and Discrete Mathematics
|
|
Publisher |
Інститут прикладної математики і механіки НАН України
|
|